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A B S T R A C T

Mushrooms play a provisioning ecosystem service as wild food. The abundance of this resource shows high
annual and interannual variability, particularly in Mediterranean ecosystems. Climate conditions have been
considered the main factor promoting mushroom production variability, but several evidences suggest that forest
composition, age and growth play also a role.

Long-term mushroom production datasets are critical to understand the factors behind mushroom pro-
ductivity. We used 22 and 24 year-long time series of mushroom production in Pinus pinaster and Pinus sylvestris
forests in Central Spain to evaluate the effect of climate and forest productivity on mushroom yield. We com-
bined climatic data (precipitation and temperature) and remote sensing data (soil moisture and the Normalized
Difference Vegetation Index, NDVI, a surrogate of primary productivity) to model mushroom yields for each
forest and for the main edible species of economic interest (Boletus edulis and Lactarius deliciosus).

We hypothesized that mushroom yield would be related to (i) forest primary productivity inferred from NDVI
affects mushroom yields, that (ii) soil moisture inferred from remote sensors will equal the predictive power
precipitation data, and that (iii) combining climatic and remote sensing will improve mushroom yield models.

We found that (i) previous year NDVI correlated (r = 0.41–0.6) with mushroom yields; (ii) soil moisture from
remote sensors rivaled the predictive power of precipitation (r = 0.63–0.72); and (iii) primary production and
climate variances were independent, thus the combination of climatic and remote sensing data improved models
with mean R2

adj as high as 0.629.
On the light of these results, we propose as a working hypothesis that mushroom production might be

modelled as a two step process. Previous year primary productivity would favour resource accumulation at tree
level, potentially increasing resources for mycelia growth, climatic conditions during the fruiting season control
the ability of mycelia to transform available resources into fruiting bodies.

1. Introduction

Fungi play key functions in forest ecosystems. Fungi contribute to
soil nutrient balance by decomposing organic matter and turning it into
inorganic components that are accessible to tree roots. Mycorrhizal
fungi also form symbiotic associations that increase trees rhizosphere,
eventually improving water and nutrient availability, enhancing tree
growth and survival and providing defense against pathogens
(Allen, 1991). In addition, mushrooms play a provisioning ecosystem

service as wild food that has been acknowledged for a long time across
multiple cultures (Boa, 2004). The growing consideration of mush-
rooms as a delicatessen, with their consequent commercialization, is
triggering a transformation on the alimentary sector (Zambonelli and
Bonito, 2012). Mushroom supplies are mostly collected in the wild and,
as a result, mushroom picking has become a popular leisure activity for
urban people. In fact, the development of a mycological touristic sector
is having high impact in low-populated, rural areas, contributing to
diversify its economy and to expand the touristic season into the
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mushroom fruiting season (Ágreda et al., 2014; Boa, 2004).
Mycological tourism is compromised by the existence of high un-

certainty in wild mushroom yields, which impedes a stable touristic
offer (Zambonelli and Bonito, 2012). This phenomenon is particularly
acute in environments where climatic conditions show extreme varia-
bility among consecutive years, such as Mediterranean ones, since
mushroom yields reflect inter-annual climate variations, both in terms
of total production and timing of the yield season (Ágreda et al., 2015;
Collado et al., 2019). Although forest management can enhance wild
mushroom production by promoting tree vigor (Tomao et al., 2017), it
does not diminish inter-annual variability driven by weather conditions
(Ágreda et al., 2016). As a result, climate change might affect wild
mushroom yields, since more intense drought events and higher eva-
potranspiration may play deleterious effects. However, later mushroom
seasons and, particularly, more abundant spring yields due to changes
in climate might provide novel windows of opportunity (Büntgen et al.,
2012; Sato et al., 2012).

Developing reliable predictive models for mushroom yields is
therefore a must for the expansion of this economic sector
(Tomao et al., 2017). Indeed, modeling factors that determine wild
mushroom yields has become an expanding area of research that ben-
efits from the ever-growing availability of long-term data sets of
mushroom yields (Alday et al., 2017; Egli et al., 2006; Fernández-
Toirán et al., 2006; Herrero et al., 2019; Martínez-Peña et al., 2012).
Weather conditions have been the main environmental factor con-
sidered in modeling mushroom yields, temperature being key in tem-
perate forests (Sato et al., 2012) and precipitation in drought-limited
Mediterranean environments (Ágreda et al., 2015, 2016; Alday et al.,
2017; Herrero et al., 2019). Minimum temperatures can also affect
mushroom yields through their effect on fruiting season length
(Ágreda et al., 2015). More refined models include forest structure and
tree growth rates (Bonet et al., 2008; Herrero et al., 2019), with some
attempts to link mushroom yields with series of tree secondary growth
(Collado et al., 2019; Primicia et al., 2016). The predictive power of
these models is, however, limited and highly dependent on data col-
lected at a local scale.

Remote sensing data have disrupted forest management by being
able to monitor forest dynamics at multiple spatio-temporal scales
(Barrett et al., 2016), and LiDAR techniques have been proven suc-
cessful to evaluate mushrooms diversity and production
(Moeslund et al., 2019; Peura et al., 2016). Soil moisture content, a
critical factor for fungal growth and mushroom production
(Karavani et al., 2018), can be inferred from RADAR sensors
(Dorigo et al., 2017; Moran et al., 2000; Paloscia et al., 2013) with time
series that are available since 1978 (Dorigo et al., 2017). In the same
way, remote sensors give information about the Normalized Difference
Vegetation Index (NDVI), which is a good estimator of primary pro-
ductivity (Birky, 2001; Rouse et al., 1973; Wang et al., 2004a) whose
interannual variations have been correlated to tree secondary growth at
different spatial and temporal scales (Vicente-Serrano et al., 2016).
Although preliminary attempts to correlate fungal fruiting phenology
and fungal diversity to annual NDVI have been recently undertaken
(Andrew et al., 2018, 2019), the relation between NDVI and fungal
production has not yet been explored to the best of our knowledge, in
spite of the existing well-known positive relationship between forest
primary productivity and fungal yields (Ágreda et al., 2014;
Alday et al., 2017; Collado et al., 2019; Herrero et al., 2019). Remote
sensing data are not independent from climate, since soil moisture re-
sponds to precipitation, evapotranspiration and soil characteristics
(Entekhabi et al., 1996) and climate is one of the main drivers of pri-
mary productivity in terrestrial ecosystems. Therefore, incorporating
remote sensors to mushroom yields’ models is a first step towards the
future development of detailed predictive models, which will help to
boost the mycological touristic sector at different parts of the world. At
the same time, this is also an opportunity to explore more in depth the
ecological role of environmental drivers on mushroom production, as

well as their potential consequences on ecosystem function.
In this study, we benefited from two of the longest time series of

fungal production (22 and 24 years), both collected in central Spain.
We used climatic (precipitation and temperature) and remote sensing
(soil moisture and NDVI) data to model total mushroom yields in wet
and dry pine forests, as well as to model the production of the main
species of economic interest at each forest type –Boletus edulis Bull.
(king bolete) in wet forests and Lactarius deliciosus (L.) Gray (saffron
milk cap) in dry forests–. Our main aim was to check whether and
which of remote sensing data will allow to predict mushroom yields.
Specifically, we hypothesized that (i) forest primary productivity (es-
timated by NDVI) will have a positive effect on mushroom yields, albeit
this effect will vary depending on the trophic guild (saprophytic vs.
mycorrhizal), (ii) soil moisture inferred from RADAR sensors will equal
the predictive power of traditionally-used precipitation data, and (iii)
the combination of climatic and remote sensing data will increase the
predictive power of models for mushroom yields.

2. Material and methods

2.1. Sampling design and mushroom data

Mushroom data used in this research were collected in central
Spain, in the province of Soria (Castilla y León region). Elevation ranges
from 1000 m to 1200 m a.s.l. and climate is Mediterranean continental,
with cold winters and a summer drought period from July to August. In
this area, two pine forests dominated by Pinus pinaster Ait. and Pinus
sylvestris L. were selected (Fig. 1). Pinus pinaster forest (dry forest,
hereafter) grows over sandy soils with high permeability and low nu-
trient content. Pinus sylvestris forest (wet forest, hereafter) grows in
more humid environments, over acidic soils as well but with higher
nutrient content. Eighteen permanent plots were established in each
forest, in 1995 for the wet forest and in 1997 for the dry forest. Plots
had 150 m2 surface and were fenced to prevent harvesting and tram-
pling. Sporocarps (fungi fruiting bodies) were sampled on a weekly
basis during the main fruiting period (September to December) until

Fig. 1. Geographical location of study area and sampling plot design (a), cli-
matogram of Soria city (b) and images of dry (Pinus pinaster) and wet (Pinus
sylvestris) forests (c-d).
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2018. All sporocarps within the plots were collected, fresh-weighed,
identified to the species level and classified according to fungal guild
(see Ágreda et al., 2015 for details). Dry forest plots were selected using
a stratified design to represent all forest structures, whereas wet forest
plots were located in bottom areas, thus increasing the difference in
water availability among forest types.

For each forest, we obtained time series of annual mushroom yield.
We also obtained annual time series of each of the main trophic guilds
(saprophytic and mycorrhizal) as well as production of the main com-
mercial species per site, i.e., saffron milk cap (Lactarius deliciosus) for
the dry forest and king bolete (Boletus edulis) for the wet forest.

2.2. Climate and remote sensing data

Records of monthly temperature and total monthly precipitation
were obtained from the Soria meteorological station (41°46′ 30′' N,
02°28′ 59′' W; 1082 m a.s.l., ≈35 km away from sampling sites,
AEMET, Spanish Government) for the 1995–2018 period. Annual mean
temperature was 11.1 °C, the coldest month being January (with mean
daily minimum temperature of −1.2 °C) and the warmest month being
July (with mean daily maximum temperature of 28.6 °C). Average
annual rainfall was 517 mm, with a summer drought period typically
occurring from mid-July to August (Fig. S1).

Soil moisture data were obtained from the ESA CCI combined Soil
Moisture dataset with a spatial resolution of 0.25 × 0.25°
(Dorigo et al., 2017; Gruber et al., 2017, 2019). These data are pro-
duced by merging both passive and active soil moisture datasets
(Liu et al., 2012) and were available from 11/1978 to 12/2018 on a
global scale. These include ASCAT scatterometer-based soil moisture
data (ERS 1/2 and MetOp A/B satellites) and radiometer-based soil
moisture data (SMMR, SSM/I, TMI, AMSR-E, WindSat, AMSR2, and
SMOS). The merging between active and passive soil moisture products
is done based on a weighted average method with the weights being
proportional to Signal to Noise Ratio, estimated using triple collocation
analysis of each product (Dorigo et al., 2013; Gruber et al., 2017). All
these different datasets are scaled to a common model of soil moisture
climatology, provided by the Global Land Data Assimilation System
(GLDAS) Noah Land Surface Model (Rodell et al., 2004). More details
about the theoretical and algorithmic base of this product and detailed
analysis about the uncertainties of the soil moisture datasets can be
found in Dorigo et al. (2017), Gruber et al. (2019, 2017) and
Liu et al. (2012). Information about the daily CCI volumetric (m3/m3)
soil moisture product can be retrieved at http://www.esa-soilmoisture-
cci.org. For our study, monthly values of soil moisture were calculated
as the average of available daily values.

We used the difference between summer NDVI and winter NDVI as
an estimate of yearly primary productivity, since we considered this
was the period that better explains tree performance in Mediterranean
continental climates (Arzac et al., 2018b). NDVI data were extracted
from LS-5, LS-7, and LS-8 NASA missions. NDVI values for all the 30-m
side pixels that included each of the plots were obtained for every
winter and summer season from the study period. We chose February
14th for winter and August 15th for summer. Since images for selected
data were sometimes not available due to clouds interference, we
searched for the closest date with a clear image available. We averaged
NDVI values over the 18 plots per forest type, year and season.

2.3. Statistical analyses

2.3.1. Model parameters selection
As a first step, we selected climatic and remote sensing variables to

be included in the definition of predictive models. To do this, we ob-
tained Pearson's correlations between mushroom yields and monthly
climate parameters (precipitation and minimum temperature) from
June to December, according to the mushroom fruiting season. For each
climatic parameter, we selected the month and the accumulated period

with the highest correlation to be included in predictive models. This
resulted in four climate parameters (two for precipitation, two for
minimum temperature) per mushroom series (i.e., mushroom yields in
wet forests, in dry forests, and production of the two main commercial
species).

We followed the same procedure for selecting parameters about soil
moisture data. Then, we obtained Pearson's correlations between
mushroom series and NDVI data for the fruiting year. Since previous
years’ primary productivity may have a delayed positive effect on
mushroom yields through the accumulation of photo-assimilates and/or
organic matter that can be later used by fungi, we also correlated
mushroom series with NDVI data from the previous year and from two
years before (i.e., one and two-years lag). From these three temporal
lags, we selected the one with the highest correlation to be included in
predictive models. Since NDVI and primary productivity have a non-
linear relationship, we also included a quadratic term of NDVI in the
models (Wang et al. 2004b).

2.3.2. Model definition
We used the selected parameters to fit three different sets of linear

models for each mushroom time series: (i) Climate models, using the four
climate parameters previously selected, (ii) Remote sensing models, using
two parameters for soil moisture and the best NDVI lag and its quad-
ratic term, and (iii) Combined models, using climate and remote sensing
parameters. Residuals of full models were analysed for normality using
Shapiro-Wilk Normality test, if residuals for any of the three models of a
times series were not normal, time series was square root-transformed
for all three models to make results comparable. Residuals normality
was achieved in all cases after transformation. For each set of models,
we compared all additive combinations of explanatory variables using
dredge() function fromMuMin package (Barton, 2009) in R environment
(R Core Team, 2019) and selected the most informative model fol-
lowing the Bayesian information criterion (BIC), which yields more
conservative models than the Akaike information criterion (Aho et al.,
2014). Variance Inflation Factors (VIF) were checked for the most in-
formative models to search for multicollinearity. Since remote sensing
data were not available for some periods, model comparison for remote
sensing and combined models was based on a reduced dataset including
solely years with complete datasets. Selected models were readjusted
using all years available, thus penalizing estimated models.

2.3.3. Trophic guilds response to NDVI
Since fungi belonging to different trophic guilds show different

feeding strategies, we assessed whether the main fungal trophic guilds
showed distinct responses to primary productivity. In order to do this,
we correlated mycorrhizal and saprophytic yields in both forest types
with NDVI values at the fruiting year and with one and two-years lag.

3. Results

3.1. Mushroom yields data

We collected 1325 kg of mushrooms: 519.1 kg in dry forests (from
which 71.4 kg were saffron milk cap, 13.8%) and 806.3 kg in wet
forests (from which 182.5 kg were king bolete, 23.3%). Mycorrhizal
fungi dominated both communities, with saprophytic comprising
around 10% of the total fresh weight. Production per ha ranged from
87.3 kg in dry forests to 124.4 kg in wet forests, but with high inter-
annual variability: coefficient of variation was 93.8% for wet and
81.7% for dry forests, being even larger for individual species (141.7%
for milk saffron cap; 92.8% for king bolete). The relative contribution of
these two species to the total yields also showed extreme variability,
ranging from 0% to 23% for milk saffron cap and to 57% for king bo-
lete.
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3.2. Selected predictors

3.2.1. Climate parameters
The best climate predictors (Fig. 2) for mushroom yields in dry

forests (n = 22) were November (r = 0.53, P = 0.011) and summer-
autumn (June to November) accumulated precipitation (r = 0.59,
P = 0.004), as well as November (r = 0.46, P = 0.032) and autumn
(September to November) (r = 0.55, P = 0.009) average minimum
temperature. Climate predictors in wet forests (n = 24) peaked a bit
earlier, in September (r = 0.64, P < 0.001) and summer-autumn (June
to November; r = 0.69, P < 0.001) for precipitation, and in September
(r = 0.54, P = 0.007) and early autumn (September to October;
r = 0.57, P = 0.003) for average minimum temperature. Saffron milk
cap showed marginally significant responses to November (r = 0.38,
P = 0.082) and September to November precipitation (r = 0.37,
P = 0.088), whereas its response to minimum temperature was mar-
ginal in September (r = 0.39, P = 0.069) and significant in September-
October (r = 0.46, P = 0.033). The best predictors for king bolete
production occurred in the same months as in wet forests, i.e., Sep-
tember (r = 0.41, P = 0.034) and June to November precipitation
(r = 0.42, P = 0.040), and September (r = 0.41, P = 0.049) and
September to October minimum temperatures (r = 0.38, P = 0.067).

3.2.2. Soil moisture data
Soil moisture in summer-autumn was highly correlated with

mushroom yields, both in dry (July to December; r = 0.63, P = 0.002,
n = 18) and wet (July to November; r = 0.66, P = 0.001, n = 20)
forests (Fig. 2). The best monthly correlation occurred later in dry
forests (October; r = 0.45, P = 0.063, n = 18) than in wet forests
(September; r = 0.63, P = 0.001, n = 23). Saffron milk cap shared its
accumulated signal period (July-December) with dry forests (r = 0.49,
P = 0.037, n = 18), but the highest single-month signal occurred in
December (r = 0.48, P = 0.082, n = 18), instead of October. King
bolete shared the soil moisture signal with wet forests, peaking from
July to November (r = 0.72, P < 0.001, n = 20) and in September
(r = 0.48, P = 0.019, n = 20).

3.2.3. NDVI effect on yields
Both forest types and single species responded positively to NDVI in

the previous year (Fig. 3a), although this response was marginal in wet
forests (r = 0.40, P = 0.053, n = 24). Mushroom yields were neither
significantly related to NDVI in the fruiting year, nor two years before,
suggesting that fungal production depends on primary productivity in
the previous year, instead of in the fruiting year.

Mycorrhizal mushroom production increased with higher NDVI in-
crement in the previous year in both forest types (r=0.601, P=0.003,
n = 22 for dry forests; r = 0.410, P = 0.047, n = 24 for wet forests),
but did not respond to NDVI increment in the current year, or two years

Fig. 2. Correlation between yearly mushroom biomass and minimum tem-
perature (Min T), precipitation (P) and soil moisture (Soil) at monthly (left) and
aggregated (right) periods for dry (a) and wet (b) pine forests, as well as for
milk saffron cap Lactarius deliciosus (c) and king bolete Boletus edulis (d).

Fig. 3. Correlation between mushroom yields and NDVI (Normalized Difference
Vegetation Index) in the fruiting year (lag = 0) and one and two years before
(lag = –1 and –2, respectively). a) Correlation coefficients for each forest type
and for the two main commercial species. From left to right: dry forests, saffron
milk cap, wet forests and king bolete. b) Correlation coefficients for mycorrhizal
and saprophytic guilds in dry forests (left plot) and in wet forests (right plot).
Lighter bar colors are used for increasing temporal lags. NDVI increment was
obtained as the difference of summer minus winter NDVI. Dashed lines with
decreasing width indicate P values of 0.05 (the thickest), 0.01 and 0.001 (the
thinnest).
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before (Fig. 3b). Saprophytic mushrooms showed disparate results de-
pending on the forest type. In dry forests, the saprophytic guild showed
strong correlation with primary productivity at one- and two-year lags
(r = 0.60, P = 0.004, n = 22 for one-year lag; r = 0.55, P = 0.008,
n = 22 for two-year lag) and, in fact, a linear model including NDVI
increments with one and two-year lags explained a large fraction of the
variance (R2

adj = 0.536, P < 0.001, n = 22). In contrast, we observed
no relationship with NDVI increments at any lag for saprophytic
mushrooms in wet forests (Fig. 3b).

3.3. Models

3.3.1. Climate models
Models for dry forests and single species were root transformed.

Accumulated precipitation from June to November (Fig. 4, Table 1) was
the only parameter included in the most informative model for ex-
plaining mushroom yields in dry forests (R2

adj = 0.399, P = 0.001,
n = 22). In wet forests, maximum yields occurred when wet June-to-
November periods were combined with humid Septembers
(R2

adj = 0.563, P < 0.001, n = 24; Table 1). The most informative
model for saffron milk cap yields only included accumulated Sep-
tember-October precipitation (R2

adj = 0.122, P = 0.063, n = 22),
whereas king bolete yields were higher in years with humid Septembers
(R2

adj = 0.220, P = 0.012, n = 24).

3.3.2. Remote sensing models
Average soil moisture from June to December and previous year and

NDVI variation (Fig. 4, Table S1) explained a large part of mushroom
yields in dry forests (R2

adj = 0.547, P = 0.001, n = 18). In wet forests,
previous year NDVI and soil moisture in September built the most in-
formative model (R2

adj = 0.393, P = 0.003, n = 22). Saffron milk cap
yields responded to previous year July to December mean soil moisture
and NDVI (R2

adj = 0.551, P = 0.001, n = 18), whereas king bolete
yields were maximal when high soil moisture from July to November
occurred after a year with high NDVI (R2

adj = 0.750, P < 0.001,
n = 20).

3.3.3. Combined models
Mushroom yields in dry forests (Fig. 4, Table 1) increased when

rainy conditions from June to November occurred after a previous year
with high NDVI variation (R2

adj = 0.682, P < 0.001, n = 22). Condi-
tions for high mushroom yields were very similar in wet forests, with a
positive effect of NDVI, June to November precipitation and high
minimum September-October temperatures (R2

adj = 0.550, P < 0.001,
n = 24). The effect of NDVI increment in the previous year was

significant for saffron milk cap and king bolete. The most informative
model for saffron milk cap included accumulated precipitation from
September to October and NDVI (R2

adj = 0.484, P < 0.001, n = 22),
whereas the model for king bolete included NDVI as well as the effects
of high soil moisture from July to September (R2

adj = 0.750, P < 0.001,
n = 20). VIF < 2 in all cases, indicating no multicollinearity.

3.3.4. Combined models provide better adjustment
Combined models included more parameters and explained a higher

proportion of variance than climate and remote sensing models on their
own (Fig. 4, Table 1). Globally, combined models provided the best fit
to the data (mean R2

adj = 0.629), followed by remote sensing models
(mean R2

adj = 0.561). Climate models provided the worst fit (mean
R2
adj = 0.326) with the only exception of wet forests, for which climate

models had the best fit (Fig. 4). Note that in remote sensing and com-
bined models, the most informative model was selected excluding years
with missing data on soil moisture and then R2

adj was recalculated using
all available data for the selected parameters, which yielded lower R2

adj

values.

4. Discussion

According to our first hypothesis, previous year primary pro-
ductivity (inferred from NDVI) had a positive correlation with fungal
yield. When exploring this signal at guild level, we found differences
across forests: the signal was similar for mycorrhizal fungi in dry and
wet forests, but differed for the saprotrophic guild. The effect was
strong at one and two-year lags in dry forests, but disappeared in more
productive wet forests. Data also supported our second hypothesis,
since soil moisture inferred from RADAR sensors rivaled the predictive
power of precipitation data. Finally, models including remote sensing
and climate data improved models based solely on climate data, thus
confirming our third hypothesis.

Soil moisture data based on remote sensors provided similar results
than precipitation in predicting mushroom yields. Soil moisture values
can be partially attributed to rain, but other parameters like tempera-
ture, insolation as well as other soil variables have also strong influence
on daily and seasonal variations in soil moisture (Robock, 2014). In
fact, long-term predictions for mushroom yields differ when evapo-
transpiration, instead of precipitation, is included in the models
(Collado et al., 2019). Considering soil moisture values instead of cli-
mate parameters in predictive models therefore circumvents this lim-
itation. Moreover, soil moisture along the fruiting season was linked
with mushroom yields in a more stable way than precipitation, which
suggests that the biological process was reflected in a more realistic
fashion.

Considering the predictive power of NDVI as a surrogate of forest
primary productivity also showed promising results. Growth of forest
fungal mycelia is supported by trees either directly –through photo-
assimilates transference (mycorrhizal fungi)– or indirectly –through the
effect of higher biomass production on substrate availability for de-
composers (saprophytic fungi)–. Different attempts have tried to link
temporal series of tree growth with fungal production (Collado et al.,
2019; Primicia et al., 2016) due to the existing relationship between
tree growth and photo-assimilate levels (von Arx et al., 2017). Tree
growth has shown promising results in Mediterranean pine forests, but
this relationship might respond to common climatic control on tree
growth and fungal production (Ágreda et al., 2015; Arzac et al., 2018a).
In this sense, remote sensing NDVI data have the potential to link pri-
mary productivity with fungal growth, since NDVI is a more robust
estimate of primary productivity than ring width (Schloss et al., 1999).
But in addition, the consistent correlation we found between previous
year NDVI and mushroom yields in all models that combined remote
sensing with climatic data suggested a clear time domain separation
between primary productivity and mushroom production, thus redu-
cing potentially confounding effects due to a common climate forcing

Fig. 4. Percentage of adjusted variance explained by climate (C), remote sen-
sing (S) and combined (B) models. Selection of the most informative model was
based on BIC. From left to right, results for mushroom yields in dry forests, milk
saffron cap production, mushroom yields in wet forests and king bolete pro-
duction.
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(Collado et al., 2019).
Our study suggests that trees’ resource accumulation in a given year

might promote fungal production in the next fruiting season. Since
different fungal guilds use different resources, contrasting responses
were expected between saprophytic and mycorrhizal fungi and, in fact,
we found some support for this expectation. Mycorrhizal fungi were
correlated to primary production in the previous year. Since mycor-
rhizal fungal biomass depends on carbon transfer by the host
(Allen, 1991), this correlation with NDVI in the previous year might be
attributed to a direct benefit from higher tree resource availability. The
effect on saprophytic fungi, on the contrary, was indirect and depended
on site productivity. Saprophytic fungi in less productive dry forests
showed strong positive responses to primary productivity with one and
two-year lags. In this managed forest with low availability of dead
wood, litterfall provides the main substrata for saprophytic fungi.
Higher primary productivity has been shown to have a direct effect on
litterfall (Schlesinger 1997; Wang et al., 2004b), albeit with some lag
for perennial species. Thus, in our pine forest, it could be expected a one
to two years lagged effect of primary productivity on litterfall, posing a
plausible explanation for the lagged correlation between NDVI and
saprophytic fungal development. In contrast, the saprophytic fraction
from more productive wet forests did not respond to primary pro-
ductivity at any temporal scale, probably due to the existence of higher
biomass accumulation, but also to the topography of sampling plots,
which were located in bottom areas, being subsidized with organic
matter from surrounding areas. With plenty of organic matter, mush-
room production control would only depend on weather conditions at
annual scale.

Based on these results, we propose as working hypothesis that
mushroom production may respond to a two-step process: resource
accumulation during the previous year would determine the energy
available to support mycelial growth, acting as a predisposing factor,

Table 1
Parameters (Par) included in the most informative models explaining mushroom yields in (a) dry forests and (b) wet forests, as well as for the species (c) Lactarius
deliciosus and (d) Boletus edulis. Climatic parameters include precipitation (P) and minimum temperature (Tmin). Remote sensing parameters include soil moisture
(soil) and the Normalized Difference Vegetation Index (NDVI), obtained as the difference of summer minus winter NDVI in the previous year (prev). Colored cells
indicate that the corresponding predictor variable (in rows) was included for that month (in columns) or period (several consecutive months) in the most informative
model. Dark blue in September in wet forests indicates the additive effect of September precipitation and the accumulated precipitation from June to November. All
factors had positive effects on mushroom yield.

Fig. 5. Schematic view of the working hypothesis proposed to study environ-
mental factors that control mushroom production. Primary productivity (NDVI)
in a given year (t-1) controls carbon gain, leading to carbon accumulation in
roots. Higher carbon accumulation would favor the development of mycor-
rhizal fungi, enhancing mushroom yields of mycorrhizal species in the fol-
lowing year (t) and thus acting as a predisposing factor. In the case of sapro-
phytic fungi, the accumulation of dead biomass under tree canopies would also
promote mushroom production in the following year or even two years later. In
any case, final mushroom production would depend on the existence of fa-
vorable weather conditions (humidity, temperature…) during the fruiting
season (triggering factor).

J.M. Olano, et al. Agricultural and Forest Meteorology xxx (xxxx) xxxx

6



whereas weather conditions during the fruiting season would regulate
the ability of mycelia to transform this energy into fruiting bodies,
acting as a triggering factor (Fig. 5). This hypothesis might help to
understand how environment control mushroom production, but we are
aware that our current results only suggest limited evidence to support
it. Therefore, future studies should test and validate (or falsify) this
hypothesis with experimental work along forests with different pro-
ductivity and fungal communities.

5. Conclusions

The combination of remote sensing sources with climatic data im-
proved our ability to model mushroom production in two
Mediterranean pine forests with contrasting humidity levels. Our soil
moisture dataset was based on coarse-grained data, but novel remote
sensing products for soil moisture already allow the estimation of soil
humidity at higher spatial (decameters) and temporal (days) resolution
(ESA – Copernicus, 2014). Moreover, fine-grained daily temperature
values are also available with remote sensing methods in a daily fashion
(Wang et al., 2004a), and remote sensing data on primary productivity
are at a very mature stage, multiple satellite-based data being freely
available. Altogether, our results open a path to use remote sensing data
at high spatio-temporal resolution to face the challenge of predicting
intra-seasonal mushroom yields over space and time.
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